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I.



1. CFD – (Not) Geophysical Fluid Dynamics

‘Conventional’ CFD differs from GFD in a number of important ways:

Pressure Coupling

Velocity-pressure coupling is ‘isotropic’ – no hydrostatic assumption:

Non-hydrostatic pressure distribution computed at each time-step.

Sub-grid Modelling

Resolve boundary-layer flows through mesh adaptation:

Sub-grid parameterisations used less frequently.

Direct Numerical Simulation (DNS) not impossible.

Geometric Constraints
Solve flow problems for arbitrarily complex geometries.

Use unstructured meshes and numerical methods.
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1. CFD – Voronoi-based Finite Volume Schemes

Integrate equations of motion in divergence form over control volumes:

∫
Ω

dq

dt
+∇ · (F(q))− Sq dV = 0

A Voronoi diagram is a set of
polygonal cells.

Each cell contains varying numbers
of edges.

The edges of each cell are always
orthogonal to a common centre.

The Voronoi diagram is constructed
upon an underlying triangulation.



1. CFD – Voronoi Finite-Volumes

Variable resolution Voronoi mesh, clustering elements in boundary layer
regions.



2. Mesh – Unstructured Triangulations

The creation of ‘optimal’ unstructured triangulations & Voronoi diagrams
is non-trivial:

Need to ensure that ‘element-quality’ is adequate:

Don’t want highly skewed cells – aim for equilateral triangles.

Don’t want cell size to vary too rapidly.

Need to optimise both vertex positions and mesh topology.

The so-called Delaunay Triangulation offers a convenient framework for
mesh generation. Given a set of vertices X ⊂ Rd , the Delaunay
triangulation T = Del(X ) is known to be ‘optimal’ for a range of
geometric criteria.
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2. Mesh – Quality Delaunay Triangulations

‘Refinement’ algorithms incrementally add vertices to a coarse mesh until all
constraints are satisfied:

A coarse triangulation is built
based on the external geometry of
the domain.

Additional vertices are added to
‘remove’ any poor quality triangles
by splitting them.

All elements in the final mesh
satisfy shape and size constraints.
In R2, the refinement algorithm
can achieve a minimum angle
θmin ≥ 30◦.
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2. Mesh – Surface & Volume Triangulations

Surface and volumetric triangulations of a turbine blade for a 3d CFD study.
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II.



3. ALE – Eulerian vs Lagrangian Methods

Equations of motion can be represented in either an Eulerian or Lagrangian
form:

Eulerian Form: Mesh is fixed and transport is achieved through
explicit evaluation of cell-wise fluxes.

Lagrangian Form: Mesh moves with the flow. Flux evaluation is
replaced by mesh movement.

Lagrangian methods allow the mesh to align locally with features of the
flow:

Quasi-Isopycnal Representation

Lagrangian vertical transport can be used to achieve a quasi-isopycnal
representation in the open-ocean, where the flow is essentially adiabatic.
Minimisation of spurious vertical mixing.
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3. ALE – Layered Vertical Structure

The aim is to follow the approach of HYCOM, introducing a ‘flexible’ vertical
discretisation that:

Follows isopycnals where possible.

Smoothly transitions to other representations where necessary. (z-model in
mixed layer, σ-model near sharp topography, etc).

1

1Temperature profiles from Bleck 2004



3. ALE – Layer-wise Equations of Motion

The equations of motion for the ocean can be written as a set of layer-wise
conservation laws:

duh

dt
+∇ · (uh uT

h ) = −∇p(Φ) + Suh

dΦ

dp
= −α

d∆p

dt
+∇ · (uh∆p) = Sp

dθ,S

dt
+∇ · (uh θ,S) = Sθ,S

Rather than introducing a ‘hybrid’ vertical coordinate (as per HYCOM),
we instead form a finite-volume scheme, integrating over layers of variable
thickness.



3. ALE – Arbitrary Lagrangian Eulerian (ALE) Methods

Issues can arise with purely-Lagrangian methods due to the movement of
the grid:

The grid may become overly distorted due to local flow
characteristics.

The grid may evolve into a non-optimal configuration.

These issues can be mitigated through use of an Arbitrary Lagrangian
Eulerian (ALE) approach:

Quasi-Eulerian Re-mapping

If the grid is ‘far-enough’ away from optimal, re-map all flow variables
onto a new target grid via interpolation.
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3. ALE – Simple Sketch of an ALE Algorithm

Φt = Φb −
∫ pt

pb

α(θt ,S t , pt) dp

∆p ut+δt
h = ut

h + δt(−∇pΦt −∇ · (∆p uh uT
h )t + ∆p Su)

∆pt+δt = ∆pt − δt∇ · (∆p ut+δt
h )

(∆p θ,∆p S)t+δt = (∆p θ,∆p S)t − δt∇ · ( ∆p ut+δt
h (θt ,S t))

At t + δt the grid has drifted (due to vertical transport):

If the grid is not where we want it, we can re-map all flow variables onto
a new grid via a (conservative) interpolation scheme.
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3. ALE – Column-wise Sketch of an ALE Algorithm

Update flow variables and cell thickness via Lagrangian motion.

Reconstruct cell-wise polynomials on current mesh.

Integrate polynomials over new mesh to get new cell means.

a

afrom Adcroft 2013



3. ALE – Evaluating the Pressure Gradient Force

Considering that the ∆p layers are sloping and non-uniform in thickness,
evaluation of the pressure gradient term ∇p(Φ) is non-trivial.

A well-known approach approximates the pressure gradient on a sloping
layer ‘s’ directly, as a finite-difference of the Montgomery potential M:

M = α∇s(p) +∇sΦ

Due to non-linearities in the equation of state α(θ,S , p), such an approach
is not typically stable. In regions of sharp topography and stratification:

A small fraction of the vertical force balance can ‘contaminate’ the
horizontal.

Such occurances can cause spurious ‘spontaneous motion’ from an
equilibriated state.
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3. ALE – Evaluating the Pressure Gradient Force

Following an approach of Adcroft et al. [1], the pressure gradient can instead
be evaluated indirectly, via a finite-volume integral:

∫
Ω

∇p(Φ) dp dx =

∮
∂Ω

Φ dC

This formulation accounts for the fully non-linear distribution of Φ around
each element:
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3. ALE – Evaluating the Pressure Gradient Force

Assess spurious motion with variable topography, linear stratification.
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3. ALE – Evaluating the Pressure Gradient Force

Given a sufficiently high-order quadrature, the finite-volume pressure
gradient formulation achieves u 0.0 error.

Such a scheme allows flexible vertical discretisation, but will maintain
equilibrium in the presence of sharp topography ad stratification.



3. ALE – Initial Results: Dense Overflow

Channel: 200km wide, 2000m deep, ∆10◦ temperature stratification.
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4. Summary

Developed a simple ‘proof-of-concept’ layered ocean model using
ALE methodologies.

Developed a stable pressure gradient formulation that minimises
pressure gradient errors with arbitrary layer geometries/stratification.

Looking to improve 2D model:

Variable number of layers per column.

General boundary conditions.

Sub-grid parameterisations.

Incorporate ALE technology into the next iteration of the GISS ocean
model.
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